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In typical jet-noise measurements one is almost always interested in the pressure 
in the far field as kR-tto. The purpose of this paper is to show that this limit is 
singular in the sense of matched asymptotic expansions. The inner solution 
(k-+to,  R fixed) is given by geometric acoustics, whereas the outer is given by the 
so-called acoustic-shieZding solution (k fixed, R -+ to). A suitable composite 
solution is also constructed. 

Now jet-noise measurements are always made a t  fixed and finite values of R 
(typically 50 jet diameters) and from these measurements one would like to 
infer the value of pR a t  R = 00, where p is the acoustic pressure. One interesting 
and somewhat unexpected result of this paper is that the value of pR at infinity 
cannot be inferred from these measurements above a certain frequency. In  other 
words, in order to obtain accurate estimates of pR a t  infinity for higher and 
higher frequencies, one has to be further and further away from the jet ! 

1. Introduction 
A re-examination of the Lighthill theory of jet noise and some carefully 

measured data, especially for hot jets, indicate that the common interpretation 
of Lighthill’s (1952) exact results is somewhat inaccurate (Lush 1972; Hoch et al. 
1973). Mani, inaseriesofpapers (1972,1974,1975~, b) ,  identifiedthemajorsource 
of discrepancy between experiment and the above theory as acousticlmean-$ow 
interaction, an effect that is missed by the usual application of Lighthill’s work. 
Of course, a number of other authors, Ribner (1962), Csanady (1966), Pao (1973) 
and Gottlieb (1960), have discussed the implications of a shrouding mean flow, 
but perhaps not quite to the same depth as Mani did. Ribner’s pioneering work 
in this area is especially important since it explained the presence of a relatively 
quiet zone in the forward angles a t  high frequencies. 

It is now clear that acoustic/mean-flow interaction plays an extremely 
important part in jet-noise theories. The only real question that remains is how 
to include this effect in a perfectly satisfactory and tractable way. One approach, 
which is certainly not free from objections,? is to follow Lilley (1972); the other 
is to disentangle the mean-flow effects from Lighthill’s equation. The latter 
requires a great deal of ingenuity but has essentially been done by Ffowcs 

t Some of these objections were discussed by Ffowcs Williams in a recent A.I.A.A. 
lecture series on jet noise. The author (1975) and, more recently, Mani (19750, b) have 
attempted to minimize some of these objections. 
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FIGURE 1. Geometry of the problem. 

of sound 

Williams (1974). In  the present discussion of mean-flow effects we prefer to start 
from the Lilley formulation. 

In  particular, we shall focus our discussion on the sound pressure level in the 
forward angles (i.e. in the ‘zone of relative silence’)? at  high frequencies. One 
interesting consequence of all the previous work on acoustic/mean-flow inter- 
action (whether for slug or continuously sheared mean profiles) is that there 
appear to be no real acoustic rays in the zone of relative silence (figure 1) .  The 
problem that we propose to solve is how to reconcile the geometric-acoustics 
picture (i.e. the existence of rays everywhere) wit,h the previous works on 
acoustic shielding. 

At the root of the difficulty is the limit kR-tm, almost always invoked in 
jet-noise acoustics. Here k = w/c, (w = circular frequency and c ,  = speed of 
sound at infinity) and R is the distance from the jet. In  the usual studies of mean- 
flow effects the above limit really implies k fixed, R-tco, whereas in geometric 
acoustics k - t  co with R fixed. These two limits are not interchangeable, hence 
kR-tco is singular in the sense of matched asymptotic expansions. The net 
upshot of this remark is that neither geometric acoustics (an inner solution) nor 
the usual acoustic-shielding solution (an outer solution) can describe the exact 
solution uniformly as kR-tco. The purpose of the present paper is to establish 
the respective regions of validity of the inner and outer solutions and to construct 
a uniformly valid composite picture. 

Sometimes also called ‘zone of silence’ even though this zone is not completely silent. 
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2. Preliminary remarks 
One objective in the study of jet noise is a solution of Lilley’s equation which 

describes approximately the generation and propagation of sound in and through 
a jet. This equation is 

L ( p ;  U,x )  = 2 D g U p - D u A p - - ( l o g c z ) D u ~ + 2 - -  1 d d u  a2p = Y ( x , t ) ,  (la) 
dr ar at- axar 
- - v . (uiu’ - uiu’), ( I b )  

d u  a 
dr ax where Y(x,  t )  = p D, V . V . (u’u‘ - u’u’) - 2p-- 

and in order to solve it (at least formally) it is sufficient to construct a Green’s 
function G such that 

L(G; U, x )  = e-iot8(r- ro)8(8)8(x)/r, ro = constant 2 0. 

The argument space of G is given explicitly by 

G = C(r, 6, x ;  r,,lt, w ) .  

I n  the above equations D,  and A denote a convective derivative and the 
Laplacian : D, = apt  + ualax (3a) 

and 

where U = U(r ) ,  c = c ( r )  and p = p ( r )  are the undisturbed (i.e. mean) axial 
component of the jet velocity, speed of sound and density and x = (r, 0, x )  is a 
cylindrical polar co-ordinate system with x pointing along the axis of the jet 
(figure 1). Both r, and w are constants and8 denotes the delta function. 

According to (I a) ,  the pressure fluctuations p obey a wave equation which is 
driven by a ‘known’ fluctuating source distribution Y(x, t )  ( t  is time). I n  the 
equation for the noise source, u‘ is the fluctuating turbulent velocity (ui is its 
radial component) and an overbar represents a usual statistical average. The 
first term of Y is generally called self-noise and the second, shear noise. They 
both are quadratic in the velocity fluctuations. 

Under the assumptions that C is finite on the axis r = 0 and represents out- 
going waves at infinity, the solution for the pressure can be written as 

where dv, = ro dr, d6, dx, and 

e iwtY(xo ,  t )  dt. 

This representation of the pressure is valid as t-+w since all initial conditions 
associated with ( 1 a )  have been ignored. 

One important feature of jet noise, as pointed out by Lighthill (1962), is source 
convection. This implies that the Lighthill stress tensor U’U’ can be written 
roughly as T EZ U’U‘ z Y(X- U,t, t ) ,  (5) 
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where T(x, t )  denotes the ‘spatial and temporal characteristics of a stationary 
eddy’ (usually isotropic turbulence; see Proudman 1952; Ribner 1969) and 
U, = constant = (0, 0, U,) is a representative source convection velocity. 
Although (4a, b )  are valid for arbitrary Y(x, t),  it  is worthwhile to introduce 
explicitly convection effects (5) into Y(x, t ) ,  and subsequently into ( l a ) .  After 
applying the Galilean transformation X’ = x - U,t to the resultant equation, we 
find that the form of (1 a )  remains invariant (i.e. Galilean invariance) and the 
following change of variables occurs: 

X+X‘ = x-Uct, u-t v = u- u,. (6% b )  

Y may then be calculated from F(x’, t ) .  
Under the assumption that the sources are reasonably compact, most of the 

characteristics ofp are contained in Gf and its derivatives, so that for the purposes 
of this paper it is sufficient to examine the properties of the Green’s function 
alone. Furthermore, G will be studied under the additional constraint that 
wa/c, & 1;  this study should indicate the behaviour of the high frequency 
content of the mean-square acoustic pressure. Here a is the length scale associated 
with the radial gradients of the mean flow (i.e. a is essentially a shear-layer 
thickness) and c, is the speed of sound at  infinity. We remark, however, that 
under certain conditions (e.g. high jet velocity) non-compactness effects can be 
very important, as first pointed out  by Ribner (1959). This is because source 
convection increases the time delays (at forward angles) across the source region 
by the Doppler factor (1  -N, cos @)-l. 

3. Outer solution : acoustic-shielding results 

it  is sufficient for the purposes of this paper to solve 
In view of what has just been said about compactness and source convection, 

(7a)  

v =  u-v,, (7 b )  

L(G; V ,  d) = e-imt6(x‘) 6(r)  6(8)/r,  

where G also satisfies the radiation condition at  infinity. Note that in (7 a)  the r 
location of the source has been set to zero; this simplification again will not influ- 
ence significantly the qualitative findings of this paper (see also Mani 1975 a, b) .  

Under the assumptiont that dU/dr < 0 and dc/dr < 0,  it was shown by the 
author (1976) that 

exp ( - IC /orofdr) 

, o < o < o c ,  (8 a)  
cJ -- IGl = 4nc, kRc, (1 -&fJ cos @)2 

where cJ and HJ are the maximum values of the jet speed of sound and Mach 
number, occurring, of course, at  r = 0 (i.e. MJ = u(O)/c,, cJ = c(O)) ,  c, = con- 
stant is the speed of sound at  infinity and k = w/c,. Equation (8a)  is valid as 
kB-tm, where R is the distance between the observer and the position of the 
Source at  the time of emission and 0 is the angle between this vector and the axis 

f This assumption is satisfied for a hot round jet. 
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of the jet. Usually R and 0 are interpreted as the distance from the jet and the 
angle with respect to the jet axis. The function f, a measure of the shielding (i.e. 
the exponential decrease in the amplitude ]GI), is given by 

3 ( 5  b )  
[COSZ 0 - (1 - 2M cos 0 ) Z  (c/c,)-2]4 

1 -nl, cos 0 f(.) = 

where M = M ( r )  = U ( r ) / c ,  and M ,  = q/cm.  For a given 0 in the range (0 ,  0,), 
f ( r )  vanishes at a unique point called r,, which defines the upper limit of integra- 
tion in (8 a). 

The angle 0, defines the so-called zone of relative silence (0  < 0 < 0,) and is 
given by 1 

0, = cos-1 ( 9 )  
cJ /cm+MJ‘  

As seen from (8 a) ,  the sound field is not identically zero in this zone of silence, but 
merely decays exponentially as the source frequency is increased indefinitely 
holding the observation angle and velocity and temperature profiles fixed. 

This zone of silence is also called the refraction valley in a number of papers by 
the University of Toronto group (and perhaps others). In  fact, it was Ribner and 
some of his students who first measured experimentally the sound field in the 
refract,ion valley of a harmonic point source embedded in a jet (see, for example, 
Atvars et al. 1966). We prefer not to use this terminology because, in our view, 
refraction is generally associated with geometrical acoustics (i.e. refraction is 
essentially ray bending) and (8 a )  has nothing to do with these geometrical con- 
cepts. Furthermore, what we call shielding also has a profound effect on the power 
radiated by a source embedded in a mean, shrouding flow; see Mani (1972).  Thus 
shielding implies considerably more than just a redirection of sound. I n  fact, 
very loosely, shielding is that physical effect that converts a non-wavelike disturb- 
ance in the vicinity of the source into a wavelike disturbance very far from the 
source. 

For 0 > O,, the amplitude of the Green’s function is still given by (Sa )  with 
r, z 0. 

Let us recall that the previous results, when extended to suitable quadrupoles, 
explain many of the features of jet noise over a wide range in frequency (Bdsa 
1976). A similar conclusion, though for a slug-flow model, was also reached by 
Mani (1975a, b) .  

4. Singular nature of problem for kR B 1 

Although the acoustic-shielding theory described in the previous section is 
quite relevant to jet noise, it has one ‘peculiar’ characteristic, namely the expo- 
nential dependence of the pressure on frequency in the zone of relative silence. 
This dependence has been partially and independently confirmed by Schubert 
(1972) over a limited frequency range. 

Two additional and important factors will determine the actual amount of 
shielding in the zone of silence. These are (i) turbulent scattering and (ii) the 
precise radial location of the sound-producing eddy. It is clear on an intuitive 
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basis that turbulent scattering, since it is diffusive in nature, will smear out sharp 
gradients and thus will limit the smallness of the pressure in the zone of silence. 
We shall not say any more about turbulent scattering in this paper. Second, the 
author has shown, in work as yet unpublished, that acoustic shielding in the zone 
of silence can be somewhat reduced by placing the quadrupoles at the nozzle lip. 
The practical significance of the last remark is that we can now successfully pre- 
dict jet noise up to reasonably high source Strouhal numbers. However, even in 
the off-axis case (i.e. quadrupoles at nozzle lip), the dependence of the pressure on 
frequency is exponential and consequently the theory will probably disagree with 
experiment a t  high enough frequencies, especially at angles near the jet axis. 

Those readers who are familiar with the kinematic or geometric theories of 
wave propagation may find it strange that in the high frequency solution of the 
previous section the leading-order term (and that is the only term we consider) 
is exponentially small; see (8 a). On the basis of some very general theorems for 
symmetric hyperbolic systems (see, for example, Lewis 1965), we expect the 
acoustic pressure to behave as 

co 

n=O 
p N I: A, k-pn + transcendentally small terms in i& 

where Bo = 0 < Bl < Bz, . . . , and the I A,I are independent of k. 
The coefficients A ,  are determined by the so-called transport equations along 

the rays and A ,  is called the geometric-acoustics solution. Since the A, satisfy 
first-order linear equations along the rays and do not vanish at the source, they 
cannot vanish along the rays (except perhaps when certain singularities are 
encountered; no singularities can exist for 0 < &r when dU/dr  < 0 and dcldr < 0). 
Furthermore, from energy arguments, one would expect A, N R-1 as R+m. 
While these expectations are correct for points outside the zone of silence, they 
are incorrect for those within it. Thus for I%-+ 03 with R fixed the solution (essenti- 
ally A,,) is quite different from that for k fixed, R -+ 03 [essentially (8 a)] .  The last 
remark implies that the limit kR -+ co, usually invoked in jet noise, is a singular 
one in the sense of matched asymptotic expansions. In  summary, the limit 
kR -+ 03 implies the following two regions. 

(i) Inner region: k-tco, R fixed. 

(ii) Outer region: k fixed, R-t co. 

The acoustic-shielding solution of 5 3 corresponds to the outer solution and cannot 
describe the exact solution uniformly as kR-+m. Thus we must construct the 
inner solution which is given by geometric acoustics. A uniformly valid solution 
can then be obtained by forming a suitable composite solution. 

The previous remarks on the non-uniformity of the acoustic field as kR-t03 
are quite reminiscent of those on the classical Stokes-Oseen approximation in 
viscous flow (Van Dyke 1975, p. 151). 



Refraction and shielding of sound from a 80urce in a jet 449 

5. Inner solution : geometric-acoustics results 
The principal assumption of geometrical acoustics is that for oalc, $ 1 

G = e-ioteik+ A(x’) + O(k-a), p > 0,  (10) 

where Cp = $(x’) is the phase and A(x’) = \GI is the amplitude of the acoustic 
signal. Substituting (10) into Lilley’s equation (7 a)  and collecting terms involving 
like powers of o yieldst 

@ + r-2@ = g2(r,  $6x) (from terms in d), (11a) 

where 

Equation (1 1 a )  is the eikoml equation and its solution by the method of charac- 
teristics is standard (Courant & Hilbert 1966, p. 97). The so-called character- 
istics of ( 1  1 a)  or equivalently the rays of (7 a )  are given by 

and along these rays we find that 

(12 a-c) 

where s is a suitable parameter along the ray.$ Thus (12) and (13) give seven 
ordinary differential equations for the seven variables r, 8, x, $6*, 4, and $6 
along each ray. The constancy of $6x and $6, implies the existence of two Snell laws 
for Lilley’s equation. 

The ordinary differential equations ( 1 2 )  and ( 1 3 )  can be solved in closed form 
for ‘outgoing’ waves (there is another solution representing ‘incoming’ waves): 

and 

J O  

subject to the initial conditions that all rays pass through the source (i.e. x = 8 = 0 
for r = 0) and that the phase vanishes at the source. Thus the explicit equation 

7 Note that for notational simplicity we shall write 2 for z’, so that #z in ( 1 1 ~ )  is 
really 

$ Note that [#:+ qh$/lrz+g2(8g/8#+)2]* ds is the elemental BSC length along the ray. 
F L M  76 29 
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of a ray is given by (14 b, c). Clearly there is a two-parameter family of rays corre- 
sponding to permissible values of (#,, $*). When the acoustic field is axially 
symmetric, as G is, #o = 0. 

The coefficient of the o2 term in Lilley's equation describes the variation of the 
amplitude along the ray. This amplitude equation is 

We now digress for a moment to write the pertinent phase, ray and amplitude 
equations in a more familiar, vector form. First, after rearranging and taking the 
positive square root of ( 1  1 a) ,  we find that 

(I-fl#.A (c/Cm)-l = lV$l, (16a) 

and the ray:equations (12) become 

c/c, dX 

IVI ds 
- - = N + (c/cm) n, 

with n = V#/lV+l, dX = (dr, rd8, dx) and N = (0, 0, N ) .  The quantity 
N + (c/cm) n is the group or ray velocity. The corresponding vector form of (13) is 

where e, is a unit vector in the r direction. We may eliminate A# from the 
amplitude equation (15) by observing that 

and taking the divergence of n. The final result is 

where, as before, d/ds = d X / d s  . V. The amplitude equation (19) implies that along 
a $xed ray 

where a2 is the ray-tube area. This ray-tube area is generated by a family of 
neighbouring rays and its normal is along the ray. 

Equation (20 )  implies that A2 x (RHS)-l is a constant along a ray; this constant 
is generally called Blokhintsev's (1946) invariant, which reduces to (20) when the 
undisturbed static pressure is a constant as in Lilley's equation. 

Before the solution for the amplitude is complete, we must compute the ray- 
tube area a2 and the constant of proportionality appearing in (20). The latter 
quantity is obtained by requiring that in the vicinity of the source equation (20) 
reduces to that for a source in a uniform flow of velocity V, = V(0)  = U ( 0 )  - U, 
and the speed of sound cJ = c(0). The calculation of d is standard, eit,her from 
geometric arguments or from the 'derived ray equations' of Hayes (1970). 
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The h a 1  result for the amplitude is 

where 

As before, R is the distance f?om the jet, 0 is the angle with respect to the jet axis 
and g* denotes g = [( 1 - Nq5,)Z (c/c,)-Z - 4:]* evaluated at $T = c~*. Equation 
(14b)  and the monotonicity of U and c imply that for 0 < $71 there is a unique 
ray passing through each point ( r ,  x). This ray is identified by the unique q5z = cr*. 

We remark that (21 a )  is valid for all values of R; that is, it  is not an approxima- 
tion of the solution in the far field. This is in contrast to (8 a ) ,  which is valid only 
as R - t m  

This concludes the theoretical development of the paper. The rest of this work 
s devoted to discussing the outer and inner solutions ( 8 a )  and (21 a) .  

6. Discussion 
The calculation of the geometric-acoustics field (21 a )  proceeds along familiar 

lines. First, for each ray, that is for each value of q5, = 5* ($@ = 0), (14  b )  and 
(21 b )  are integrated numerically to obtain the position of the ray x = x(r)  and the 
modified ray-tube area i?. Since there are no caustics for 0 < in, the numerical 
integration offers no difficulty; more specifically, d never vanishes. 

The relationship between 0 and a is shown in figure 2. Once again, 0 is the 
angle between the observation vector and the jet axis, and a is the corresponding 
angle the ray makes (with the x axis) at  the source. There are several interesting 
observations to be made. First, the ray that passes through 0 = 90" has aninitial 
ray angle of a = 51". This ray is then refracted (i.e. refraction = ray bending due 
to mean-velocity and temperature gradients), so that far away from the jet it 
passes through the 90" observation point. Note that the direction of the ray is the 
direction along which energy propagates. This direction, in general, is not the 
same as that of the wave normal (i.e. the normal to the phase surfaces #I = con- 
stant). The precise relationship between the ray direction d X / d s  and the wave 
normal V# is given by (16 6 ) .  When the flow vanishes (i.e. N = 0 )  the ray is along 
the wave normal. However, this is a very special case that is commonly 
encountered only in classical acoustics. 

Second, the ray that starts out horizontal remains horizontal forever since the 
curvature of a ray is proportional to the mean-flow gradients (which vanish at  
r = 0) .  Thus the point a = 0 corresponds to 0 = 0, as is shown in the figure. 

Third, and most important, the curve a = a(@) exhibits a 'boundary layer' in 
the vicinity of a = 0. Here the term 'boundary layer' is used in its generalized 
sense, as is frequently done for singular perturbations. In  this particular example, 
the term simply denotes the region in which da/d@ is very small. Thus the curve 
a = a(@) may be conveniently divided into two regions: da/d@ = O(1) and 
da/d@ 9 1. The rays that fill this boundary layer (i.e. a < 3") spread quite 

29-2 
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@ (deg) 

FIGURE 2. Geometric-acoustics solution. Relationship between angle to jet 
axis and initial ray angle. Me = 0, cold jet, E = a/R = 0-1. 

rapidly and emerge in a cone of semi-angle of about 30’. Thus this cone is not 
expected to carry much acoustic energy since all of this energy must have 
originated from a very small part of the source. 

Pailure to recognize this boundary layer has led to several incorrect statements, 
such as “a cone. . . dowstream of the source is not reached by any sound rays at 
all.. . ” (Csanady 1966) or “sound emitted from sources within a jet is expected 
to have an acoustic shadow inside a cone in the forward direction. . . ’’ (Morse & 
Ingard 1968, p. 713). (Indeed, if one extrapolates the a! = a(@) curve down to the 
0 axis as shown in figure 2, one arrives at  the incorrect conclusion that the a! = 0 
ray emerges at 0 % 30O.) Figure 2 clearly shows that there are rays everywhere, 
no matter how small 0 is. Incidentally, the results in figure 2 are given for M, = 0 
and e = u/R = 0.1, where a is the jet radius (the value of r where the local velocity 
is about 15 yo of the centre-line velocity, an arbitrary definition). I n  all of the 
sample calculations the velocity profile is exponential: M = MJ exp ( - 2r2/a2). 

It is precisely the presence of this boundary layer that accounts for the singular 
nature of the problem as kR+m (see § 4). 

In  figure 3 we show the sound pressure level SPL’ = 10log,,(R2[G]2) for 
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0 20 40 60 80 I00 

@ (deg) 
FIGURE 3. Pressure level in inner region (geometric acoustics). 

MJ = 0.8, Mc = 0, cold jet. 

various values of 6 = a/R.  Note that the dependence has already been 
extracted from this definition of SPL‘ and that the calculations are made from 
the inner solution (21 a).  These results show that for ‘large’ 0 (i.e. for 0 outside 
the boundary layer of figure 2) )GI2 follows very nearly an RM2 dependence (i.e. 
SPL’ is essentially independent of R), while for ‘small’ 0 (i.e. for 0 inside the 
boundary layer of figure 2 )  SPL’ has substantial additional dependence on R; 
more precisely, the dependence is on E = a/R. We find that only for E = 0 is there 
a perfect shadow in the downstream region near the jet axis. Thus in the inner 
region, at  high frequencies, we may write 

where f ( i )  is a known function (which is actually displayed in figure 3). The 
dependence on E = a / R  enters because the mean velocity profile has the length 
scale a associated with it. 

This decrease in the pressure level a t  shallow angles and for small values of E is 
due to classical refraction or ray bending. 

The next step is to compare the outer and inner solutions (8 a )  and (21 a). This 
is done in figure 4. The acoustic-shielding results are given for three values of the 
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FIGURE 4. Comparison of inner and outer solutions. 
MJ = 0.8, M, = 0, cold jet. 

source Strouhal number (At = ka/nHJ)  and the geometric-acoustics solution lies 
somewhere in the shaded region, depending on the value of E. I n  jet-noise 
measurements e = a / R  is typically about Thus the outer solution, valid for 
large values of R and high frequencies, has the functional form 

PLor -+ R-2f("W, ka; MJ, M,, C,/Cm). 

Of course, f(*) is shown graphically in figure 4. 
Now in jet-noise measurements one would always like to obtain the outer 

solution because the integral of this solution, over a suitable surface, yields the 
power radiated by the source. Also the outer solution is the true far-field solution 
since pout,, N R-1. Since jet-noise measurements are always made at  finite values 
of R, the measured acoustic field will always be contaminated by the inner solu- 
tion. The degree of contamination is shown in figure 4. Clearly, as the frequency is 
increased at a fixed value of e (i.e. a t  a fixed measuring radius for a given jet) the 
degree of contamination increases. For example, when E = 0-1, Xt = 5 and 
0 w 40" the inner and outer solutions are of the same order (figure 4), so that 
under these conditions it is not the acoustic far field that would be measured. 
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I I I I I 
1 10 10' 103 

ha 

FIGURE 5 .  Inner, outer and composite solutions. 0 = 30°, MJ = 0.3, 
,%Ic = 0, cold jet. ___ , outer solution; - - - - - -, inner solution. 

Since the common asymptote of (8a)  and (21 a )  is identically zero for 0 < O,, 
the construction of the composite solution is extremely simple. One such solution 
is shown in figure 5 for e = 0.025. These results indicate that, for very large values 
of ka, the outer solution completely breaks down. Conversely, the inner solution 
is not valid for moderate values of ka. Also, the inner solution limits the amount 
by which SPL' can fall as ka-tco in the absence of turbulent scattering. 

7. Conclusions 
We have shown in this paper that the limit k R a 0 0  is singular in the sense of 

matched asympt'otic expansions. One often encounters this limit while measuring 
the far field of noise generated by jet-like flows. The inner and outer solutions are 
obtained from geornetric-acoustics theory (k  --f 00, R fixed) and acoustic-shielding 
theories ( k  fixed, R-t 00) respectively. 

In  order to ensure that a suitable integral of the sound pressure level results in 
the power (or power spectrum) of the radiated sound, it is necessary to have 
IG2) N R-2 as R -+ co. Clearly, it is only the acoustic-shielding theory that has this 
variation of amplitude for all 0. However, the actual (or measured) acoustic field, 
especially at shallow angles, is a composite of the shielding and geometric fields 
(figure 5). For a certain location in the far field, say E = a / R  = 0.025, there is a 
maximum value of ka, say ka NN 10, beyond which the difference between the 
composite and shielding results becomes larger than some error criterion, say 
2dB. Thus a t  this location in the far field the measured noise is no longer 't,he 
infinitely far noise ' (quite apart from the inverse-square law) when the frequency 
is great,er than that corresponding to ka NN 10. 

Obviously then, the validity of a far-field location must be carefully established 
not only at low but also at  high frequencies in any experimental set-up. Purther- 
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more, it is essential to do this for jet-like flows (loudspeakers commonly used will 
not do) and at  shallow angles. 
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